Description:
Explore copying operations on containers in Python in this 9-vdeo course, which examines the subtle distinction between shallow and deep copies. Changes made to shallow copies affect the original whereas with deep copies they do not. Learners begin by observing Jupyter notebook in Python, where you will be performing shallow and deep copies of Python strings. You will learn how to create shallow copies of lists, and then create deep copies of lists where changes to the copy do not affect the original. Following this, you will begin working with tuples, a process which you will discover is quite simple because tuples are immutable. So you will learn how to create shallow and deep copies of tuples. You will also learn how deep copies of dictionaries work, and perform shallow and deep copies of sets. In the closing exercise, learners are asked to recall how shallow and deep copies work for complex data types.
Target Audience:
Duration: 00:45
Description:
This 9-video course helps learners explore dictionary data type in Python. Dictionaries are associative containers used to store key-value pairs. Given a key, finding the associated value is optimized by Python to be extremely efficient. First, receive an introduction to dictionaries in Jupyter Notebook in Python. You will learn how to create and initialize dictionaries, then learn about nesting complex data types within dictionaries. Continuing with the study of Python dictionaries, you will explore what functions and methods can be invoked on these dictionaries, such as modifying and updating dictionaries using dictionary methods. Next, you will be introduced to sets, another commonly used complex data type that Python supports. You will then create and initialize sets. This leads on to performing set operations such as union, intersection difference, and other set operations. You will also examine nested lists, and work with nested types within other complex data types. In the final tutorial, you will learn how to convert lists to dictionaries and vice versa. The concluding exercise entails recalling features of dictionaries and sets.
Target Audience:
Duration: 00:54
Description:
Learn how to work with lists, tuples, and strings in Jupyter notebook in Python in this 14-video course. You will discover similarities and differences between tuples and lists and see how strings are essentially just a list of characters. Begin with an introduction to lists, and then create and initialize lists in Python. You will then access and update list elements; add, remove, sort, and reverse elements from a list; execute built-in functions with lists, and create new lists from existing lists by using slicing operations. Next, examine how to extract specific elements from the original list using step size; perform list functions on strings; invoke functions on the string object; and access substrings with slicing operations. Receive an introduction to tuples, exploring the similarities between lists and tuples, then move on to understanding tuple immutability by specifying differences between lists and tuples. Then an introduction to other complex data types and using dictionaries and sets in Python. The concluding exercise concerns recalling differences and similarities between lists and tuples.
Target Audience:
Duration: 01:39