Description:

Learners explore how Apache Hive query executions can be optimized, including techniques such as bucketing data sets, in this Skillsoft Aspire course. Using windowing functions to extract meaningful insights from data is also covered. This 10-video course assumes previous work with partitions in Hive, as well as conceptual understanding of how buckets can improve query performance. Learners begin by focusing on how to use the bucketing technique to process big data efficiently. Then take a look at HDFS (Hadoop Distributed File System) by navigating to the shell of the Hadoop master node; from there, make use of the Hadoop fs-ls command to examine contents of the directory. Observe three subdirectories corresponding to three partitions based on the value of the category column. You will then explore how to combine both the partitioning as well as bucketing techniques to further improve query performance. Finally, learners will explore the concept of co-windowing, which helps users analyze a subset of ordered data, and then to see how this technique can be implemented in Hive.

Target Audience:

Duration: 01:04

Description:

Continue to explore the versatility of Apache Hive, among today’s most popular data warehouses, in this 10-video Skillsoft Aspire course. Learners are shown ways to optimize query executions, including the powerful technique of partitioning data sets. The hands-on course assumes previous work with Hive tables using the Hive query language and in processing complex data types, along with theoretical understanding of improving query performance by partitioning very large data sets. Demonstrations focus on basics of partitioning and how to create partitions and load data into them. Learners work with both Hive-managed tables and external tables to see how partitioning works for each; then watch navigating to the shell of the Hadoop master node, and creating new directories in the Hadoop file system. Observe dynamic partitioning of tables and how this simplifies loading of data into partitions. Finally, you explore how using multiple columns in a table can partition data within it. During this course, learners will acquire a sound understanding of how exactly large data sets can be partitioned into smaller chunks, improving query performance.

Target Audience:

Duration: 01:01

Description:

In this 7-video Skillsoft Aspire course, learners can explore optimizations allowing Apache Hive to handle parallel processing of data, while users can still contribute to improving query performance. For this course, learners should have previous experience with Hive and familiarity with querying big data for analysis purposes. The course focuses only on concepts; no queries are run. Learners begin to understand how to optimize query executions in Hive, beginning with exploring different options available in Hive to query data in an optimal manner. Discuss how to split data into smaller chunks, specifically, partitioning and bucketing, so that queries need not scan full data sets each time. Hive truly democratizes access to data stored in a Hadoop cluster, eliminating the need to know MapReduce to process cluster data, and makes data accessible using the Hive query language. All files in Hadoop are exposed in the form of tables. Watch demonstrations of structuring queries to reduce numbers of map reduce operations generated by Hive, and speeding up query executions.  Other concepts covered include partitioning, bucketing, and joins.

Target Audience:

Duration: 00:43

Description:

Learners explore working with complex data types in Apache Hive in this Skillsoft Aspire course, which assumes previous work with Hive tables using the Hive query language, and comfort using a command-line interface or Hive client to run queries. Learners begin this 12-video, hands-on course by working with Hive tables whose columns are of complex data types (arrays, maps, and structs). Watch demonstrations of set operations and transforming complex types into tabular form with explode operation. Then use lateral views to add more data to exploded outputs. Course labs use the Beeline client; the instructor’s Beeline terminal runs on the master node of a Hadoop cluster, provisioned on Google Cloud platform using its Dataproc service, and learner access is assumed to a Hadoop cluster and Beeline, on-premises or in the cloud. Finally, learners observe how to use views to aggregate contents of multiple columns. As the course concludes, you should be comfortable working with all types of data in Hive and performing analysis tasks on tables with both parameter types as well as complex data.

Target Audience:

Duration: 01:14

Description:

Among the market’s most popular data warehouses used for data science, Apache Hive simplifies working with large data sets in files by representing them as tables. In this 12-video Skillsoft Aspire course, learners explore how to create, load, and query Hive tables. For this hands-on course, learners should have a conceptual understanding of Hive and its basic components, and prior experience with querying data from tables using SQL (structured query language) and with using the command line. Key concepts covered include cluster, joining tables, and modifying tables. Demonstrations covered include using the Beeline client for Hive for simple operations; creating tables, loading them with data, and then running queries against them. Only tables with primitive data types are used here, with data loaded into these tables from HDFS (Hadoop Distributed File System) file system and local machines. Learners will work with Hive metastore and temporary tables, and how they can be used. You will become familiar with basics of using the Hive query language and quite comfortable working with HDFS.

Target Audience:

Duration: 01:20

Description:

This 9-video Skillsoft Aspire course focuses solely on theory and involves no programming or query execution. Learners begin by examining what a data warehouse is, and how it differs from a relational database, important because Apache Hive is primarily a data warehouse, despite giving a SQL-like interface to query data. Hive facilitates work on very large data sets, stored as files in the Hadoop Distributed File System, and lets users perform operations in parallel on data in these files by effectively transforming Hive queries into MapReduce operations. Next, you will hear about types of data and operations which data warehouses and relational databases handle, before moving on to basic components of the Hadoop architecture.  Finally, the course discusses features of Hive making it popular among data analysts. The concluding exercise recalls differences between online transaction processing and online analytical processing systems, asking learners to identify Hadoop’s three major components; list Hadoop offerings on three major cloud platforms (AWS, Microsoft Azure, and Google Cloud Platform); and list benefits of Hive for data analysts.

Target Audience:

Duration: 00:56