Description:

This 11-video course explores advanced Bayesian computation models, as well as how to implement Bayesian modeling with linear regression, nonlinear, probabilistic, and mixture models. In addition, learners discover how to implement Bayesian inference models with PyMC3. First, learn how to build and implement Bayesian linear regression models by using Python for machine learning solutions. Examine prominent hierarchical linear models from the perspective of regression coefficients. Then view the concept of probability models and use of Bayesian methods for problems with missing data. You will discover how to build probability models by using Python, and examine coefficient shrinkage with nonlinear models, nonparametric models, and multivariate regression from nonlinear models. Examine fundamental concepts of Gaussian process models; the approaches of classification with mixture models and regression with mixture models; and essential properties of Dirichlet process models. Finally, learn how to implement Bayesian inference models in Python with PyMC3. The concluding exercise recalls hierarchical linear models from the perspective of regression coefficients, and asks learners to describe the approach of working with generalized linear models, and implement Bayesian inference by using PyMC3.

Target Audience:

Duration: 00:52

Description:

Learners can examine the concept of Bayesian learning and the different types of Bayesian models in this 12-video course. Discover how to implement Bayesian models and computations by using different approaches and PyMC for your machine learning solutions. Learners start by exploring critical features of and difficulties associated with Bayesian learning methods, and then take a look at defining the Bayesian model and classifying single-parameter, multiparameter, and hierarchical Bayesian models. Examine the features of probabilistic programming and learn to list the popular probabilistic programming languages. You will look at defining Bayesian models with PyMC and arbitrary deterministic function and generating posterior samples with PyMC models. Next, learners recall the fundamental activities involved in the PyMC Bayesian data analysis process, including model checking, evaluation, comparison, and model expansion. Delve into the computation methods of Bayesian, including numerical integration, distributional approximation, and direct simulation. Also, look at computing with Markov chain simulation, and the prominent algorithms that can be used to find posterior modes based on the distribution approximation. The concluding exercise focuses on Bayesian modeling with PyMC.

Target Audience:

Duration: 00:48

Description:

This 11-video course explores the machine learning concepts of Bayesian methods and the implementation of Bayes' theorem and methods in machine learning. Learners can examine Bayesian statistics and analysis with a focus on probability distribution and prior knowledge distribution. Begin with a look at the concept of Bayesian probability and statistical inference, then move on to the concept of Bayesian theorem and its implementation in machine learning. Next, learn about the role of probability and statistics in Bayesian analysis from the perspective of frequentist probability and subjective probability paradigms. You will examine standard probability, continuous distribution, and discrete distribution, and recall the essential elements of Bayesian statistics including prior distribution, likelihood function, and posterior inference. Recognize the implementation of prominent Bayesian methods including inference, statistical modeling, influence of prior belief, and statistical graphics. Describe prior knowledge and compare the differences between non-informative prior distribution and informative prior distribution. The steps involved in Bayesian analysis, including modeling data, deciding prior distribution, likelihood construction, and posterior distribution are also covered. The concluding exercise focuses on Bayesian statistics and analysis.

Target Audience:

Duration: 01:01